Charmonium properties in a renormalization scheme

J. Segovia, D. R. Entem, F. Fernández and E. Ruiz-Arriola segonza@usal.es

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2010) Williamsburg, May - June 2010

University of Granada

University of Salamanca

イヨト イヨト イヨト

Contents

Constituent quark model

- 2 Renormalization scheme with boundary conditions
- 3 Masses in charmonium from both schemes

Study of some physical observables in function of different model parameters

- Masses vs α_s
- Masses vs σ
- Leptonic decays vs α_s

6 Conclusions

э

1.- Constituent quark model

1.1.- Most important ingredients / J. Phys. G: Nucl. Part. Phys. 31, 481 (2005)

• Spontaneous chiral symmetry breaking (Goldstone-Bosons exchange):

$$\begin{split} \mathcal{L} &= \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \mathcal{M} \mathcal{U}^{\gamma_{5}} \right) \psi \rightarrow \quad \mathcal{U}^{\gamma_{5}} = 1 + \frac{i}{f_{\pi}} \gamma^{5} \lambda^{a} \pi^{a} - \frac{1}{2f_{\pi}^{2}} \pi^{a} \pi^{a} + \dots \\ \mathcal{M}(q^{2}) &= m_{q} \mathcal{F} \left(q^{2} \right) = m_{q} \left[\frac{\lambda^{2}}{\lambda^{2} + q^{2}} \right]^{1/2} \end{split}$$

• QCD perturbative effects (One gluon exchange):

$$L = i\sqrt{4\pi\alpha_s}\,\bar{\psi}\gamma_\mu G^\mu \lambda^c \psi$$

• Confinement (screened potential):

$$V_{CON}^{C}(\vec{r}_{ij}) = \left[-a_{c}(1-e^{-\mu_{c}r_{ij}})+\Delta\right](\vec{\lambda}_{i}^{c}\cdot\vec{\lambda}_{j}^{c})$$

$$\begin{cases}
V_{CON}^{C}(\vec{r}_{ij}) = (-a_{c}\mu_{c}r_{ij}+\Delta)(\vec{\lambda}_{i}^{c}\cdot\vec{\lambda}_{j}^{c}) & r_{ij} \to 0 \\
V_{CON}^{C}(\vec{r}_{ij}) = (-a_{c}+\Delta)(\vec{\lambda}_{i}^{c}\cdot\vec{\lambda}_{j}^{c}) & r_{ij} \to \infty
\end{cases}$$

Remember:
$$\sigma = -a_c \mu_c (\vec{\lambda}_i^c \cdot \vec{\lambda}_i^c)$$

Constituent quark model

Renormalization scheme with boundary conditions Masses in charmonium from both schemes Study of some physical observables in function of different model parameters Conclusions

1.2.- Non-relativistic reduction of our potential

• One-gluon exchange (OGE)

$$\begin{aligned} V_{OGE}^{C}(\vec{r}_{ij}) &= \frac{1}{4} \alpha_{s}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}} - \frac{1}{6m_{i}m_{j}}(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}) \frac{e^{-r_{ij}/r_{0}(\mu)}}{r_{ij}r_{0}^{2}(\mu)} \right] \\ V_{OGE}^{T}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}m_{j}}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}^{3}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}} \left(\frac{1}{r_{ij}^{2}} + \frac{1}{3r_{g}^{2}(\mu)} + \frac{1}{r_{ij}r_{g}(\mu)} \right) \right] S_{ij} \\ V_{OGE}^{SO}(\vec{r}_{ii}) &= -\frac{1}{16} \frac{\alpha_{s}}{\alpha_{s}}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{s}^{2}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}} \left(1 + \frac{r_{ij}}{\alpha_{s}} \right) \right] \times \end{aligned}$$

$$egin{aligned} & V_{OGE}^{SO}(ec{r}_{ij}) = - \, rac{1}{16} \, rac{lpha_s}{m_i^2 m_j^2} (ec{\lambda}_i^c \cdot ec{\lambda}_j^c) \left[rac{1}{r_{ij}^3} - rac{e^{-r_{ij} \, r_g(\mu)}}{r_{ij}^3} \left(1 + rac{r_{ij}}{r_g(\mu)}
ight)
ight] imes \ & imes \left[((m_i + m_j)^2 + 2m_i m_j) (ec{S}_+ \cdot ec{L}) + (m_j^2 - m_i^2) (ec{S}_- \cdot ec{L})
ight] \end{aligned}$$

Confinement

$$\begin{split} V_{CON}^{\mathcal{C}}(\vec{r}_{ij}) &= \left[-a_c (1 - e^{-\mu_c r_{ij}}) + \Delta \right] (\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c) \\ V_{CON}^{SO}(\vec{r}_{ij}) &= -\left(\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c \right) \frac{a_c \mu_c e^{-\mu_c r_{ij}}}{4m_i^2 m_j^2 r_{ij}} \left[((m_i^2 + m_j^2)(1 - 2a_s) + 4m_i m_j (1 - a_s))(\vec{S}_+ \cdot \vec{L}) + (m_j^2 - m_i^2)(1 - 2a_s)(\vec{S}_- \cdot \vec{L}) \right] \end{split}$$

Constituent quark model

Renormalization scheme with boundary conditions Masses in charmonium from both schemes Study of some physical observables in function of different model parameters Conclusions

1.2.- Non-relativistic reduction of our potential. Singular contributions

$$\begin{split} V_{OGE}^{C}(\vec{r}_{ij}) &= \frac{1}{4} \alpha_{s}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}} - \frac{1}{6m_{i}m_{j}}(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j})4\pi\delta(r_{ij}) \right] \\ V_{OGE}^{T}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}m_{j}}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \frac{1}{r_{ij}^{3}} S_{ij} \\ V_{OGE}^{SO}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}^{2}m_{j}^{2}}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \frac{1}{r_{ij}^{3}} \times \\ &\times \left[((m_{i} + m_{j})^{2} + 2m_{i}m_{j})(\vec{S}_{+} \cdot \vec{L}) + (m_{j}^{2} - m_{i}^{2})(\vec{S}_{-} \cdot \vec{L}) \right] \\ V_{OGE}^{C}(\vec{r}_{ij}) &= \frac{1}{4} \alpha_{s}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}} - \frac{1}{6m_{i}m_{j}}(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}) \frac{e^{-r_{ij}/r_{0}(\mu)}}{r_{ij}r_{0}^{2}(\mu)} \right] \\ V_{OGE}^{T}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}m_{j}}(\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}^{3}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}} \left(\frac{1}{r_{ij}^{2}} + \frac{1}{3r_{g}^{2}(\mu)} + \frac{1}{r_{ij}r_{g}(\mu)} \right) \right] S_{ij} \\ V_{OGE}^{SO}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}^{2}m_{j}^{2}} (\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \left[\frac{1}{r_{ij}^{3}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}^{3}} \left(1 + \frac{r_{ij}}{r_{g}(\mu)} \right) \right] \times \\ &\times \left[((m_{i} + m_{j})^{2} + 2m_{i}m_{j})(\vec{S}_{+} \cdot \vec{L}) + (m_{j}^{2} - m_{i}^{2})(\vec{S}_{-} \cdot \vec{L}) \right] \end{split}$$

Constituent quark model

Renormalization scheme with boundary conditions Masses in charmonium from both schemes Study of some physical observables in function of different model parameters Conclusions

1.3.- Some recent applications

N-N interaction

- D. R. Entem, F. Fernández and A. Valcarce, Phys. Rev. C 62, 034002 (2000)
- B. Julia-Diaz, J. Haidenbauer, A. Valcarce and F. Fernández, Phys. Rev. C 65, 034001 (2002)

Baryon spectrum

- H. Garcilazo, A. Valcarce and F. Fernández, Phys. Rev. C 63, 035207 (2001)
- H. Garcilazo, A. Valcarce and F. Fernández, Phys. Rev. C 64, 058201 (2001)

Meson spectrum

- J. Vijande, A. Valcarce and F. Fernández, J. Phys. G 31, 481 (2005)
- J. Segovia, D. R. Entem and F. Fernández, Phys. Rev. D 78 114033 (2008)
- J. Segovia, D. R. Entem and F. Fernández, accepted by J. Phys. G

Molecular states

 P. G. Ortega, J. Segovia, D. R. Entem and F. Fernández, Phys. Rev. D 81, 054023 (2010)

2.- Renormalization scheme with boundary conditions 2.1.- Features

 ${\ensuremath{\, \bullet }}$ We have two particles interacting throught a central potential

$$-u''(r) + \mathcal{U}(r)u(r) = k^2 u(r)$$

Second order differential equation \Rightarrow two linear independent solutions

• One of them is the physical solution and so we have to choose the solution that is given by the regular condition at the origin

$$u(0) = 0$$

• BUT there are a great number of physical systems which we do not know the exact potential

Interaction potential is known at large distancies but not at short distancies

• Solution: We can apply boundary conditions to potentials whose short range is not known

Means that we can fix one physical observable of the large distancies and it is equivalent to impose a boundary condition at origin

2.2.- Application to hydrogen Spin-Orbit

$$V(r) = -\frac{\alpha hc}{r} + \frac{\alpha (hc)^3}{2m^2} \frac{1}{r^3} \vec{L} \cdot \vec{S}$$

 $n = 2 J = 1/2 L = 1 S = 1/2 \Rightarrow ATTRACTIVE$

(a)

2.3.- Some recent applications and our aim

'Renormalization of NN-Scattering with one pion exchange and boundary conditions'

M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 70 044006 (2004)

- 'Renormalization of the deuteron with one pion exchange'
 M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 72 054002 (2005)
- 'Renormalization vs strong form factors for one boson exchange' A. Calle Cordon and E. Ruiz Arriola, Phys. Rev. C **81**, 044002 (2010)
- 'Low energy universality and scaling of Van der Waals forces'
 A. Calle Cordon and E. Ruiz Arriola, Phys. Rev. A 81, 044701 (2010)

OUR AIM

- Renormalization with boundary conditions applied to our model ⇒ Non perturbative treatment of our singular potential parts without cut-offs (no r̂₀ and r̂_g)
- The model in this framework has few parameters and allows us to study the correlations between physical observables and model parameters which have some physical meaning

2.4.- Final expresions for the different model contributions

• One-gluon exchange (OGE)

$$\begin{split} V_{OGE}^{C}(\vec{r}_{ij}) &= \frac{1}{4} \alpha_{s} (\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \frac{1}{r_{ij}} \\ V_{OGE}^{T}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}m_{j}} (\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \frac{1}{r_{ij}^{3}} S_{ij} \\ V_{OGE}^{SO}(\vec{r}_{ij}) &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}^{2}m_{j}^{2}} (\vec{\lambda}_{i}^{c} \cdot \vec{\lambda}_{j}^{c}) \frac{1}{r_{ij}^{3}} \times \\ &\times \left[((m_{i} + m_{j})^{2} + 2m_{i}m_{j})(\vec{S}_{+} \cdot \vec{L}) + (m_{j}^{2} - m_{i}^{2})(\vec{S}_{-} \cdot \vec{L}) \right] \end{split}$$

Confinement

$$\begin{split} V_{CON}^{\mathcal{C}}(\vec{r}_{ij}) &= \left[-a_c (1 - e^{-\mu_c r_{ij}}) + \Delta \right] (\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c) \\ V_{CON}^{SO}(\vec{r}_{ij}) &= - \left(\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c \right) \frac{a_c \mu_c e^{-\mu_c r_{ij}}}{4m_i^2 m_j^2 r_{ij}} \left[((m_i^2 + m_j^2)(1 - 2a_s) \\ &+ 4m_i m_j (1 - a_s)) (\vec{S}_+ \cdot \vec{L}) + (m_j^2 - m_i^2)(1 - 2a_s) (\vec{S}_- \cdot \vec{L}) \right] \end{split}$$

3.- Masses in charmonium from both schemes

3.1 Model parameters

Quark Mass	m_c (MeV)	1763
OGE	α_0	2.118
	Λ_0 (fm ⁻¹)	0.113
	μ_0 (MeV)	36.976
	\hat{r}_0 (fm)	0.181
	\hat{r}_{g} (fm)	0.259
Confinement	a_c (MeV)	507.4
	$\mu_{c}~({ m fm}^{-1})$	0.576
	Δ (MeV)	184.432
	as	0.81

Remember: There are no cut-off in the renormalization scheme (no \hat{r}_0 and \hat{r}_g)

(B)

3.2.- Calculation

State	CQM (MeV)	$\mathcal{P}_{{}^3S_1}$	$\mathcal{P}_{^{3}D_{1}}$
J/ψ	3096	99.959	0.041
$\psi(2S)$	3703	99.958	0.042
ψ (3770)	3796	0.032	99.968
ψ (4040)	4097	99.935	0.065
ψ (4160)	4153	0.060	99.940
$\psi(4360)$	4389	99.908	0.092
$\psi(4415)$	4426	0.089	99.911
$\psi(4660)$	4614	99.884	0.116
ψ (4660)	4641	0.114	99.886

The mixing between S-wave and D-wave states is negligible from our original model and so we can calculate ${}^{3}S_{1}$ and ${}^{3}D_{1}$ without coupling in a renormalization scheme

< ∃ →

3.3.- Solution stability in renormalization scheme

- 4 回 > - 4 回 > - 4 回 >

Ξ.

3.4.- Model results

State	n	M_{RSC} (MeV)	M_{CQM} (MeV)	M_{exp} (MeV)
${}^{3}S_{1}$	1	3096 [†]	3096	3096.916 ± 0.011
	2	3703	3703	3686.093 ± 0.034
	3	4097	4097	4039.6 ± 4.3
	4	4389	4389	-
	5	4614	4614	-
${}^{3}D_{1}$	1	3796 [†]	3796	3772.92 ± 0.35
	2	4153	4153	4153 ± 3
	3	4426	4426	4421 ± 4
	4	4641	4641	-

Both schemes are equivalent

<ロ> <同> <同> < 回> < 回>

Constituent quark model Renormalization scheme with boundary conditions Masses in charmonium from both schemes

Masses vs α_s Masses vs σ Leptonic decays vs α

Study of some physical observables in function of different model parameters

4.- Study of some physical observables in function of different parameters

4.1.- Masses vs α_s

J. Segovia et al. segonza@usal.es

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.1.- Masses vs α_s . Continuation

Ξ.

Masses vs α_s

Masses vs σ Leptonic decays vs α_s

4.1.- Masses vs α_s . Continuation

J. Segovia et al. segonza@usal.es Charmonium properties in a renormalization scheme

Masses vs α_s Masses vs σ Leptonic decays vs

4.3.- Masses vs σ

J. Segovia et al. segonza@usal.es Charmonium properties in a renormalization scheme

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.3.- Masses vs σ . Continuation

< ∃⇒

ъ.

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.3.- Masses vs σ . Continuation

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.4.- Leptonic widths vs α_s

$$\Gamma(n^{3}S_{1} \to e^{+}e^{-}) = \frac{4\alpha^{2}e_{c}^{2}|R_{n}(0)|^{2}}{E_{n}^{2}}\left(1 - \frac{16\alpha_{s}}{3\pi}\right)$$
$$\mathcal{R} = \frac{\Gamma(n^{3}S_{1} \to e^{+}e^{-})}{\Gamma(1^{3}S_{1} \to e^{+}e^{-})} = \frac{|R_{n}(0)|^{2}}{|R_{1}(0)|^{2}}\frac{E_{1}^{2}}{E_{n}^{2}}$$

< ∃⇒

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.4.- Leptonic widths vs α_s . Continuation

J. Segovia et al. segonza@usal.es Charmonium properties in a renormalization scheme

Masses vs α_s Masses vs σ Leptonic decays vs α_s

4.4.- Leptonic widths vs α_s . Continuation

Ξ.

5.- Conclusions

- We re-analyze the calculation of the charmonium spectrum in constituent quark model using a renormalization boundary condition scheme
- We find a good agreement between both schemes which provides confidence on the way the original model take into account the unknown short distance dynamics
- The use of this scheme allows us to further study the dependence of the states on the model parameters in a cleaner way since the regulator dependence has been removed when a suitable renormalization condition is imposed
- We find:
 - The mass of the excited states strongly depend on the string tension parameter
 - There is a remarkable insensitivity to the strong coupling constant entering the one gluon exchange contribution to the potential. This avoids a great deal of unphysical fine tuning which suggested taking for this parameter unnaturally large values $\alpha_s \sim 0.3 0.4$
 - The leptonic widths depend strongly on the strong coupling constant. As expected because is a short range observable